A Multilevel Stochastic Collocation Method for Schrödinger Equations with a Random Potential
نویسندگان
چکیده
We propose and analyze a numerical method for time-dependent linear Schrödinger equations with uncertain parameters in both the potential initial data. The random are discretized by stochastic collocation on sparse grid, sample solutions nodes approximated Strang splitting method. computational work is reduced multilevel strategy, i.e., combining information obtained from computed different refinement levels of discretization. prove new error bounds time discretization which take finite regularity variable into account, crucial to obtain convergence approach. predicted cost savings verified examples.
منابع مشابه
A Convergence Analysis of Stochastic Collocation Method for Navier-stokes Equations with Random Input Data
Stochastic collocation method has proved to be an efficient method and been widely applied to solve various partial differential equations with random input data, including NavierStokes equations. However, up to now, rigorous convergence analyses are limited to linear elliptic and parabolic equations; its performance for Navier-Stokes equations was demonstrated mostly by numerical experiments. ...
متن کاملA sparse grid stochastic collocation method for elliptic partial differential equations with random input data
This work proposes and analyzes a sparse grid stochastic collocation method for solving elliptic partial differential equations with random coefficients and forcing terms (input data of the model). This method can be viewed as an extension of the Stochastic Collocation method proposed in [Babuška-Nobile-Tempone, Technical report, MOX, Dipartimento di Matematica, 2005] which consists of a Galerk...
متن کاملA Multi-fidelity Stochastic Collocation Method for Parabolic Partial Differential Equations with Random Input Data
Over the last few years there have been dramatic advances in the area of uncertainty quantification. In particular, we have seen a surge of interest in developing efficient, scalable, stable, and convergent computational methods for solving differential equations with random inputs. Stochastic collocation (SC) methods, which inherit both the ease of implementation of sampling methods like Monte...
متن کاملA Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data
In this paper we propose and analyze a Stochastic-Collocation method to solve elliptic Partial Differential Equations with random coefficients and forcing terms (input data of the model). The input data are assumed to depend on a finite number of random variables. The method consists in a Galerkin approximation in space and a collocation in the zeros of suitable tensor product orthogonal polyno...
متن کاملA Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data
This work proposes and analyzes a Smolyak-type sparse grid stochastic collocation method for the approximation of statistical quantities related to the solution of partial differential equations with random coefficients and forcing terms (input data of the model). To compute solution statistics, the sparse grid stochastic collocation method uses approximate solutions, produced here by finite el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM/ASA Journal on Uncertainty Quantification
سال: 2022
ISSN: ['2166-2525']
DOI: https://doi.org/10.1137/21m1440517